PREDICTING TELECOMMUNICATION TOWER COSTS USING FUZZY SUBTRACTIVE CLUSTERING
نویسندگان
چکیده
منابع مشابه
Hysteresis Modeling using Fuzzy Subtractive Clustering
This paper summarizes work undertaken in the area of modeling Shape Memory Alloy (SMA) and airfoil hysteresis using a Sugeno-type fuzzy modeling approach based on subtractive clustering. Two alternative approaches to develop a fuzzy model for hysteresis are proposed and evaluated. The first consists in building a mirror image of the lower curve in order to model both curves concurrently and the...
متن کاملImproving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملBreast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm
Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used. First,...
متن کاملA fuzzy clustering method using Genetic Algorithm and Fuzzy Subtractive Clustering
Clustering is a challenging problem in data mining, requiring both accurate determination of the number of clusters and correct clustering of the data. Fuzzy C-means (FCM) is a popular algorithm using the partitioning approach to solve this problem. A drawback to FCM is that it requires the number of clusters to be set a priori. In this study, we combine FCM with Genetic Algorithm (GA), Subtr...
متن کاملBreast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm
Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used. First,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Civil Engineering and Management
سال: 2014
ISSN: 1392-3730,1822-3605
DOI: 10.3846/13923730.2013.802736